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A feature of a conducting phase at low density is that there is a singularity in 
the fugacity expansion of the pressure, whereas the same expansion in the 
insulating phase gives an analytic series. The Yang-Lee characterization of a 
phase transition thus implies that in the conducting phase the zeros of the grand 
partition function must pinch the real axis in the complex scaled fugacity (4) 
plane at ~ = 0, whereas in the insulating phase a neighborhood of ~ = 0 must be 
zero free. Exact and numerical calculations are presented which suggest that for 
two-component log-potential lattice gases in one dimension with dimensionless 
coupling F, the zeros pinch the point ~=0 for F<2,  while for F>~2 a 
neighborhood of ~ = 0 is zero free. The conductor-insulator transition therefore 
takes place at F = 2  independent of the density and other parameters in the 
model. 

KEY WORDS:  Conductor-insulator transition; Yang-Lee theory; exact 
solvability. 

1. I N T R O D U C T I O N  

The log-potential ,  two-componen t  C o u l o m b  gas on a one-d imens ional  

lattice is perhaps the simplest system to exhibit  a conduc to r - i n su l a to r  
t ransi t ion.  In  addi t ion  to the theoretical interest of this feature, it has 
been shown (~) that  this system is essentially equivalent  to the q u a n t u m  

Brownian  mo t ion  problem in a periodic potential .  The conduc t ing  and  
insula t ing phases correspond to mobi le  and  t rapped states, respectively, of 
the particle in the q u a n t u m  problem. 

Department of Mathematics, La Trobe University, Bundoora, Victoria 3083, Australia. 

203 

0022-4715/90/0700-0203506.00/0 �9 1990 Plenum Publishing Corporation 



204 Forrester 

The two components of the model are the positive and negative two- 
dimensional Coulomb charges, both of magnitude q, and the dimensionless 
coupling constant is 

F := qZ/k B T (1.1) 

Recent studies (2 5) have focused on solvability properties of this system. In 
ref. 2 the grand partition function 2, which is a polynomial in the scaled 
fugacity 4, was factorized exactly at F =  2 and 4. These and subsequent 
exact results suggest further areas of study, two of which will be addressed 
in this paper. 

The first is again exact solvability. The motivation given in ref. 2 for 
the exact results at F =  2 and 4 was a correspondence with the solvability 
of the one-component system at F =  1, 2, and 4. For the one-component 
model, the Boltzmann factors at these three couplings are related to the 
three classical groups: orthogonal, unitary, and symplectic. (6) Clearly the 
correspondence is not complete, as at F =  1 in the two-component model 
no exact solution was given. Here an asymmetric two-component log- 
potential lattice gas is solved exactly, and it will be shown that in a certain 
limit the F =  1 symmetric model is recovered. 

The second topic suggested to be considered here is an analysis of the 
phase transition via the location of the zeros of the grand partition func- 
tion. In ref. 2 it was conjectured that the zeros of the polynomial Z(~) for 
the symmetric lattice gas were all on the negative real axis in the conduct- 
ing phase, and on the unit circle in the insulating phase. In Section 4 of this 
paper the question of determining the phase from the location of the grand 
partition function zeros is addressed. 

Numerical finite lattice calculations for the asymmetric model show 
that again in the conducting phase all the zeros lie on the negative real axis 
in the scaled fugacity plane. Further, for F < 2, evidence is presented which 
suggests the zero closest to the origin, ~1 say, has the expansion 

1 I a~(F) a2(U) ] ~ =  - ~-~ a o ( r ) + - - - M - - ~ - - ~ 7 -  + ""  (1.2) 

where ao(F), 7 > 0 and M is the order of the polynomial ~(~). 
For the symmetric model we conjecture 

? = 2 - F  (1.3) 

The key feature to note is that as M--, 0% the zero pinches the real axis at 
the origin. Assuming a finite density of zeros have the behavior (1.2), this 
says the pressure is nonanalytic at ~ = 0, which is a feature of a conducting 
phase. 
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At F = 2  the expansion (1.2) holds with 7 =0 .  A gap of magnitude 
ao(2) is thus present between the zeros and the positive real fugacity axis. 
Here the pressure is now an analytic function of ~ in the neighborhood of 

= 0, the Taylor series having radius of convergence a0(2). This is a feature 
of an insulating phase, so a conduc to r  insulator phase transition has taken 
place. 

2. AN A S Y M M E T R I C  L O G - P O T E N T I A L  LATTICE GAS 

In addition to the solvable one-component systems of Dyson, (6~ a 
solvable two-component log-potential plasma has been found. (7/Both com- 
ponents have charges of like sign with charge ratio 1:2. In correspondence 
with this solvable model we propose the following two-component lattice 
gas. 

2.1. D e f i n i t i o n  of  t h e  M o d e l  

Consider a line of length L, which is divided into M intervals so that 
there are lattice sites at the points n L / M ,  n = 1, 2,..., M .  Introduce two 
interlacing lattices, the first at the points (~o + l ) L / M ,  the second at the 
points (q}1 + l ) L / M ,  l =  0, 1, 2,..., M - 1 .  Denote these lattices Lt, L2, and 
L3, respectively (see Fig. 1). Allow N (~<M) positive charges of magnitude 
2q to occupy L~ and 2N negative charges of magnitude q to occupy either 
L 2 o r  L 3 .  

The charges are two-dimensional, so that they interact via the 
logarithmic potential. In periodic boundary conditions, the potential is 

V(Ol,  02) = - q l  q2 logE le 2=i~ - e2=i~ (L/2~)] (2.1) 

Denote the coordinates of the kth positive charge by m k L / M ,  and the 
coordinates of the k th  negative charge by (le + ~bo) L / M  if the charge is on 
L2 or ( l k + ( ~ l ) L / M  if the charge is on L3. The allowed values of rn~ are 
me = 1, 2,..., Mr, while the allowed values of lk are lk = 0, 1,..., M -  1. 

Further denote 

X k = c ~ and Yk = e2rri(Ik + ~p)/M (2.2) 

k 

= a i ~ .L : 

.~oL/M _ 
�9 - L/M 

~L/M =~ ~ 

Fig. 1. The lattice geometry and spacings. The sublattices LI, L2, and L 3 are denoted by 
dashes, crosses, and triangles, respectively. 
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where p = 0, 1 according to whether the negative charge is on sublattice t 2 
or L3, respectively. 

With this notation, the Boltzmann factor WNF for N particles of 
charge +2q and 2N particles of charge - q  is 

W N F  = (2 r r /L )  3Nr IF(x1, . . . ,  XN;  y , , . . . ,  Y2u) l  v (2.3 

where 

F := F ( x l  ..... XN;  Yl, . . . ,  Y2N) 

.__ I ~ 1  <~ j < k  ~ U ( X k  - -  X j )  4 1 7 1  <~j<k ~ N ( Y k  - -  )2]) 

HjN-1 H 2N--1 (X j  - -  y k )  2 
(2.4) 

The partition function ZNF and grand partition function 2 r  are given by 

l M M - - 1  

ZN' -- N!(2N)~ ~ Z W N V  (2.5) 
mi,...,mN= 1 II,...,12N=O 

and 

M 

-~r:  ~ ~2NZNr (2.6) 
N=0 

respectively, where r denotes the activity. 

2.2. B o l t z m a n n  Factor  As a Dete rm inan t  

The solvable case to be presented here is F =  1, and this feature relies 
on the following determinant identity. 

T h e o r e m  2.1. With the notation (2.4), 

F =  det [ ( x j -  y~) 1] (2.7) 
L(xj - yk) -2J  j= ,,..., u 

k--  1,..., 2N 

where the determinant consists of 2 x 1 blocks, with elements as given. 

P r o o k  Our method of proof is very similar to that used in ref. 2, 
pp. 464-465, to derive a similar identity. Briefly, we begin with the Cauchy 
double alternant formula with determinant size 2N: 

1 ) u  [ I 1  <, j < k <-- 2~v (X~ - -  X j ) ( y  k - -  --1 
( - -  I-Ij=2N1 H 2Nk=l ( y e - - X j )  YJ) = det[(xk -- yj) ]k,j= 1,...,2N (2.8) 
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The identity (2.7) folloWs by taking the limit xj---~xj+ N for each 
j =  1, 2 , . ,  N. This is straightforward on the left-hand side. On the right- 
hand side it is necessary to first subtract the j t h  row from the ( j +  N)th 
row. Rearranging the order of the rows and canceling the leading-order 
common factor on both sides then gives (2.7). 

Remark. The identity (2.7) occurs in Muir ~8~ and is due to 
F. Brioschi in a paper published in 1882. 

Suppose all the xj and Yk in (2.7) have unit modulus. Each term in the 
determinant can then be Taylor expanded, provided a parameter #, [p[ < 1, 
is introduced by replacing each Yk by #Yk. This procedure gives 

F =  x / 3  lim I ]  ~ 2 l - -  i ( #  lx l ) - -c~2l-1-  cz2l 

/ 2 ~ 1  ~Xl ,..., ~2N = 0 l = 1  

• det [Y~J]k,j= 1,. ,2N (2.9) 

Further, with the assumption of all the x / a n d  y~ having unit modulus, 

IFI = ( _ i ) N  I ]  (Xj); ?if, y~/' F (2.10) 
j = l  

and so substituting (2.10) and (2.9) in (2.3) gives a determinant identity for 
W N  1 �9 

The limit # --, 1 - can be taken by following the procedure of ref. 2, 
p. 467. Thus, write the summation in (2.9) as 

~j=Tj+kjM, O~<Tj~<M- 1, k j=0 ,  1,2,.. (2.11) 

With the choices (2.2) of xx and Yk, this gives 

The formulas 

and 

then show 

x~' = x~ and y~J = e2~i*~Jy~ (2.12) 

lim (#e2~icp) ~ - -  e2~iCp (2.13) 
# ~ 1  k = O  1 - -  

e2;zi~ p 

lira k(pe2~ioQk - (1 - e2~i~p) 2 (2.14) 
# 4 1  k = O  

2 N  M -  1 2 N  

WNI=(--i)N (z~Z/L)3NF H yl/2 E I] Xl  721-y21-I-I 
k = l  "yl,..,, Y2N = 0 / = 1  

X dotV r(~ f;1)(72j ) ,,~2j1 ~ k  J j ,  k =  1 , , 2 N  ~ ' l _ J p  Y k  (2.15) 
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where 

1 
f (o )  _ ( 2 . 1 6 )  
" P 1 - -  e 2rricjp 

and 

1 ( Me 2~i~r 
f5'11(7)-- 1 - - e  2=iop 7 +  1 + i_e2~iO-------~p/ (2.17) 

3. F A C T O R I Z A T I O N  OF THE G R A N D  PARTIT ION F U N C T I O N  

3.1. The Part i t ion Function 

The factorization of the grand partition function at F =  1 from the 
identity (2.15) closely parallels that used in ref. 2 to factorize the grand par- 
tition function for the symmetric two-component log-potential lattice gas at 
F =  4. The latter calculation is fairly complicated. However, it has been 
shown by Rosinberg (4~ (see also ref. 5) that a more revealing and simpler 
calculation is possible. Unfortunately, no progress has been made in 
modifying Rosinberg's approach to the present situation, so we must resort 
to the original method. In this section we will derive a tractable expression 
for ZNX.  

Substituting (2.15) in (2.5) shows that the sum over the mk can be 
done immediately. Since 0 ~< ~k ~< M, we have 

M N N 

Z ~ X k  (]~2k-1+72k-t-1)=mN ~I  (~72k-l+~2k,m--1 ( 3 . 1 )  

ml,...,mN= I k = 1 k = 1 

where cSa, b denotes the Kronecker delta function. 
Now consider the sum over the l~ in (2.5). Since the summand is sym- 

metric, we can make the orderings 

1 <~ll ~I2<~ ... <~lzN<~M (3 .2 )  

provided we multiply by (2N)!. Now do the sum over l~ ,13 , . . . ,12N_l  

(method of summation over alternate variables(S)). These coordinates occur 
in the first, third,.., rows of the determinant, respectively. For  the sum over 
11 there are two possibilities: 

(i) 12 is on the sublattice L 2. In this case we sum Ii from 0 to 12--1 
inclusive. 

(ii) 12 is on the sublattice L3. Here we sum l~ from 0 up to and 
including 12. 
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Both these seemingly different procedures  are the same, since the 
l~ = 12 term in (2.5) is zero. Performing the sum according to these rules 
gives for the j t h  element of the first row 

12k 1 + p 
f~o x) ~ e2r~i(' + 00)('~9 + 1/2) /M 

/ = 0  

/2k 1 + p  
+ . f { x ) ( y j )  ~ e2x i ( l +~ i ) (w+ l /2 ) /M  ( 3 . 3 )  

/ = 0  

where k = 1; x = 0 or l according to whether  the column index is even or 
odd, respectively; and p = 0 or 1 according to whether  12 is on the L3 or L 2 
sublattice, respectively. 

The sum over 13 is from 12 to 14. However,  by adding the first row 
(3.3), which leaves the value of the determinant  unchanged, the sum can be 
taken from 0 to 14. The third row of the determinant  is thus (3.3) with 
k =  2. Proceeding similarly, we see that  the ( 2 k -  1)th row is given by (3.3) 
for each k = l, 2 ..... N. 

Since 

t2k 1 + p 
Z e2=i( l +  ~)(7;+ I /2 ) /M 

/ = 0  

e2Xi( 1/2 + r + I /2)/M( ] __ e2aZi(yj + 1/2)(12/; + p)/M) 

= - 2 i  sin rc(yj + �89 (3.4) 

we see that the j t h  element of the ( 2 k -  1)th row is 

G{X)tl 7j)  :~- [- ~'(x)l~' ~ ~ +~~ 1/2)/M .-I- ['('*)['~, ] e2~Zi(1/2+OD(Tj+ 1/2)/Mj 
p ~,~2k, L d 0  t , z j !  ~ t d l  ~ g j /  

x (1 -e2"i(y:+l/2)(z2~+P)/M)/[-2isin z~(?;+ �89 (3.5) 

Hence 

/vl-- 1 N 

ZN,=(2rc/L)3N(--iM)N(N[) -1 2 ]-[ 6r2,-l+,2,,lv* , 
y2,y4, . . . ,72N= 0 k =  1 

rG(O)~ l , ~(1)(1 ?2,,)] p t2k,~2j 1) "-'p ~2k, 
x y, d e t /  f(O)y~,2j_, f~*)(?2fly'~2~jj, k=l,...,N 

0~<12414~< . . .  <~12N ~ M _ I I__ p 2k 

(3.6) 

The determinant  in (3.6) has a 2 x 2 block structure. If we define 

z(k)  = {?  k k e v e n  odd (3.7) 

822/'60/'i-2-14 
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then the determinant has the expansion 

(2N)! N 

E  (P)lq 
P = I  k = l  

G z ( P ( 2 k  t ) ) (1  p t,2k, 7e(2k- i)) fz(e(2k))(Te(2k)) y~p(2k) (3.8) 

The determinant is symmetric in the 12k , SO the sum over each 12k can be 
taken from 0 to M -  1 provided we divide by N!. Performing the sum gives 
a contribution with the structure 

N 

I~ ap(2~_ 1),e(ek) (3.9) 
k = l  

Further, the sum over the permutations in (3.8) can be restricted to the set 

X =  {P: P(2/) > P ( 2 l -  1) each l =  1, 2,..., N} (3.10) 

if we replace (3.9) by 
N 

[ ~  ( a e ( 2 k -  1) ,e(2k)  - -  a p ( 2 k ) , P ( 2 k  1)) ( 3 . 1 1 )  
k = l  

After calculating the explicit form of ap(2~_ ~),e(2k) we thus have 

M 1 N 

Z l  N = ( 2 r c / L ) 3 X  M2JV(N!) 2 ~ H 6Y2k , +Y2k,M 1 
72,74,-.-,T2N=0 k ~  1 

N 

• E Fl 
x k = l  

[6~pc2k ~)+ 7p(2,).M-~ A ~(Te(~_k); z ( P ( 2 k  - 1 )), z (P (2k ) ) ) ]  

(3.12) 
where 

A1(7P(2~); z ( P ( 2 k -  1)), z(P(Zk))) 

1 
__ fC'z(P(Zk))[~, ] r  1))( AAr__ 1 - -  ] )P(2k) )  

sin 7"C(Te(2k ) -k- 1/2) /M t Jo  we(2k)J Jo  t,.- 

x e 2'~i+~ cos 7z(ye(2k ) + �89 

+fz(e(2k))(Ti,(2k) ) fz(P(2k 1))(M_ 1 -- YP(2k)) 

• f2rci~ble2~Zi(~b0 -- ~bl )(7P(2k) + 1/2)/Me~zi(yP(2k) + 1/2)/M 

+ f~(e(ak l))(7p(zk) ) f z (p ( zk ) ) (M_  1 - -  •P(2k))  

X e2Zci~b~ 27ti(~bl - ~b~ + 1~2)/Me -- rci(TP(2k) + 1/2)/M 

+ f~(p(2~ 1))(ye(:,)) fzl(,o(~k))(M_ 1 -- 7P(2k)) 

• e 2~i~' cos 7z(Tp(z, ) + �89 (3.13) 
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The formula (3.12) has precisely the same structure as the partition func- 
tion for the symmetric, two-component, log-potential lattice gas at F =  4 
(ref. 2, pp. 468-469). 

3.2. The Grand Par t i t ion  Funct ion 

The working contained in ref. 2, pp. 469-473, demonstrates the follow- 
ing result for the grand partition function when the partition function has 
the structure (3.12). 

T h e o r e m  3.1. Let ZIN be defined by (3.12) for any function A1 
with the property 

m l(~'P(2k) ; z(P(Zk - 1 )), x(P(2k))) 

= A I ( M -  1 -7m2k); z (P (  2 k -  1)), z ( P ( Z k ) ) )  (3.14) 

Then 
M 

~---~1 := 2 ~3NZ1N 
N = 0  

[ M / 2 ]  - -  1 

= I-I { [1 + (2~' /L) 3 M 2 A , ( k ;  O, 0)3 
k = 0  

x [ l  + (2Try/L) ~ M 2 A I ( M  - 1 - k ;  O, 0)] 

-- ( 2 ~ / L )  6 A2(k)} 

x [1 + ( 2 ~ / L )  3 M 2 A I ( ( M  - 1)/2; O, 0)], 
M even 
M o d d  (3.15) 

where 

A 2 ( k ) = A ~ ( k ;  1, 1) A s ( M - k -  1;0, 0) (3.16) 

Since from (3.13) the property (3.14) holds, the factorization is thus 
complete once the functional forms of A1 and A 2 are inserted and some 
simplification performed. However; before doing this it is desirable to intro- 
duce a scaled fugacity ~, defined so that the grand partition function 
becomes a polynomial of order M (the number of lattice sites in each sub- 
lattice) and the coefficient of the highest power is unity. 

As noted in ref. 2, pp. 474M75, these requirements are fulfilled by the 
choice 

= (2rc~/L)3 er(e~ + e2 + e~) (3.17) 
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where Ej is the energy of a particle on sublattice Lj. (The energy between 
two particles on different sublattices only counts half, so as to avoid double 
counting.) A straightforward calculation along the lines of that given in 
ref. 2, p. 475, shows that 

~, sin2 ~01 sin 2 ~0o/  

and thus the scaled fugacity is explicitly specified. 
Now reconsider the expression (3.15). After some simple calculations, 

use of (3.13), (3.7), (2.17), (2.16), (3.17), and (3.18) shows that 

(27z~/L)6M4[Al(k;O,O)AI(M-I-k;O,O)-Az(k)]=~ 2 (3.19) 

(27r{/L) 3 A,((M- 1)/2); 0, 0 ) =  { (3.20) 

and 

(2rc~/L)3MZ[Al(k;O,O)+Al(M-l-k;O,O)]=g.f(k;r (3.21) 

where 
8 sin 2 re01 sin 2 rC0o 1 

f(k;Oo, 01)= - 
m sin 7r(01 - 0o) sin rc(k + 1/2)/M 

(2k - M +  1) cos rc(k + 1/2)/M 
x 4 sin 2 ~zr 

( 2 k -  M +  1)cos ~z(k+ 1/2)/M + 
4 sin 2 rc01 

2 k +  1 - M  + 
2 sin 7r0o sin 7t01 

I27c(r zc(k MI/2)  1 x cos ~ i  + 

m sin 72(0 o - 01) + 
4 sin 2 ~Zr sin 2 ~01 

xsin 2 ~ ( r 1 6 2  
M 

Hence the grand partition function at F =  l factorizes as 
[M/23 -- 1 

Sa = [ I  (1 --1-- ~ ( k ;  00, 01) + ~2) 
k=O 

1, M even 
x (1 +  ~), M o d d  (3.23) 
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where f is given by (3.22) and the notation [ . ]  in the product terminal 
denotes the integer part. 

A feature of the polynomial 2~ =21(~)  immediately apparent from 
(3.23) is that 

~1(1/{) = (1/~) v 21({) (3.24) 

which says that 31 is a reciprocal polynomial. For the symmetric two-com- 
ponent log-potential lattice gas it was shown in ref. 2, p. 474, that in terms 
of the appropriate scaled fugacity, the grand partition function is a recipro- 
cal polynomial for all F. However, this feature does not persist for general 
asymmetric lattice gases, due to the lack of symmetry between the sublat- 
rices available to the same signed charge. (Conversely, if the sublattices I~ 2 
and L3 are indistinguishable in periodic boundary conditions, as happens 
with the choices ~bo = 1/3, ~bl = 2/3 and ~b o = 1/4, ~bl = 3/4, the grand parti- 
tion function is reciprocal in ~ for all F.) Numerical calculations shows that 
for the present system, the grand partition function is only reciprocal at 
F =  1 and 2. 

3.3. Grand Part i t ion Function of Symmet r i c  Model  

Consider a system of N particles of charge +2q  and 2N particles of 
charge - q  on the lattice described in Section 2.1. In the limit ~bl ~ 0, the 
leading-order contribution comes from those configurations in which all 
sites on L 3 next to occupied sites on Iq are occupied. Thus, each +2q 
charge is paired with a - q  charge. The effective potential at a distance r 
from such a pair is just the potential of a single positive charge of 
magnitude + q. 

By introducing the scaled fugacity (3.17), the grand partition function 
of this limiting system is precisely the grand partition function of a system 
of equal numbers of positive charges + q  and negative charges - q .  The 
fugacity ~ is given in terms of the scaled fugacity ~ by 

2rr~/L = {(2/(M sin rr~bo)) r (3.25) 

Although the number and magnitude of the charges is symmetric, the 
domain is still asymmetric: the positive charges can occupy sites on the 
sublattice L 1 only, but the negative charges can occupy either the sublattice 
L1 or L 2 (the latter provided there is no positive charge at the site; see 
Fig. 2). 
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Fig. 2. An allowed configuration for the symmetric lattice gas, Sublattice L 1 is denoted by 
dashes and L~ by crosses. The positive charges can occupy sublattice L2 only, while the 
negative charges can occupy either sublattice L I or L2. 

By taking the limit ~b~ --+ 0 in (3.23), we see that at F =  1 of the sym- 
metric model, the grand partition function has the exact factorization 

[ M / 2 ]  - -  1 

- [ I  (1 + 4h(k;~bo)+ 42 ) s y r n  ~ 1 - -  

k - O  

1, M even (3.26) 
x 1 + 4 ,  M o d d  

where 

2 
h(k; ~o)- 

M sin rc(k + 1/2)/M 

+ M sin [}--~2 ( M ~  -1 k )  + M ( k + ~ ) ] }  (3.27) 

3.4. Zeros of  the  Grand  Par t i t ion  Funct ion  

From (3.23), the zeros of 21 occur at the zeros of the quadratic 

1 + ~(k;  ~b0, ~1)-4- ~2 (3.28) 

S incef i s  real, we can immediately conclude that the zeros are either on the 
negative real axis or unit circle of the complex ~ plane. Numerical calcula- 
tions indicate that f(k; ~b0, ~b ~) >~ 2 for all 0 ~< k ~< M - 1. If true, this implies 
that all the zeros are on the negative real axis. 

3.5. T h e r m o d y n a m i c  L imi t  

It is a simple task to obtain the pressure from (3.23) and (3.26), as the 
operation 

1 
log ~1 (3.29) 
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gives a Riemann sum approximation to an integral. Thus, for the sym- 
metric model, the dimensionless pressure rflP ( r = L / M  is the lattice 
spacing) at F =  1 is given by 

where 

zf lP= log[l +~H(t ;~o)+~2]  dt 
~0  

H(t; ~b0) = sin 7rt 2(1 - 2t) cos zt sin 7r~o 

- 2 sin [2=~o ( t - ~ ) -  ~ t ]}  

(3.30) 

A similar (but more lengthy) expression for the pressure in the asymmetric 
case can be written down immediately from (3.23). 

Changing variables 

in (3.30) gives 

H(t; 0o) = s + 1/s, 0 < s ~< 1 (3.32) 

zf lP=;o g(s)log 1+ ( l + s ~ ) d s  (3.33) 

The function g(s) gives the density of zeros at ~ = - s .  It has the normaliza- 
tion property 

f~ 1 (3.34) g(s) & = 

and can be calculated explicitly from the formula 

1/g(s) = ds/dt (3.35a) 

= H'(t; ~b0)/(1 - s -2) (3.35b) 

where (3.35b) follows from (3.32), provided (3.35b) is regarded as a func- 
tion of s. 

The zeros do not intersect the positive r axis, so there is no transition 
as ~ is varied. However, from (3.35b) we can deduce that at r = 0 the den- 
sity of zeros is 

4 sin lr~b o 
g(0) = - -  (3.36) 

7Z 

(3.31 
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This means that the pressure is not an analytic function of the scaled 
fugacity at ~ = 0. From (3.33), using integration by parts, the leading-order 
singular behavior is 

~/3P ~ -g(O) ~ log ~ (3.37) 

4. THE PHASE D I A G R A M  A N D  FINITE-SIZE 
LATTICE CALCU LATIONS 

Two-component log-potential lattice gases have two phases--a high- 
temperature conducting phase and a low-temperature dipole (insulating) 
phase. The conducting phase is characterized by an analogue of the 
Stillinger-Lovett sum rule (see, e.g., ref. 9), which is a condition on 
the asymptotic behavior of the charge-charge correlation. In the dipole 
phase the Stillinger-Lovett sum rule breaks down and a different decay is 
expected. (3) 

In the low-density limit the conducting and insulating phases can be 
further distinguished. If the pressure is expanded about zero fugacity in the 
conducting phase, there is a singularity [as in (3.37)], whereas the same 
expansion in the insulating phase gives an analytic series. In the analogous 
continuous, two-dimensional, charge-symmetric Coulomb gas it has been 
shown in ref. 10 (see also ref. 11) that for F~> 2 all the coefficients of the 
Mayer series diverge. Between F =  2 and F =  4 the coefficient of i N is finite 
if and only if F > 4 - 2 / N ,  while the series is analytic above F = 4 .  In 
accordance with the Yang Lee characterization of a phase transition, (~2) 
these features of the phases have immediate consequences for the location 
of the zeros of the grand partition function: in the conducting phase the 
zeros must pinch the real axis in the complex ~ plane at ~ = 0, whereas in 
the insulating phase a neighborhood of ~ = 0 must be zero free. 

Can this characterization be used to locate the transition temperature 
in two-component log-potential lattice gases? To explore this question, first 
the symmetric log-potential lattice gas was considered and numerical 
calculation of the zeros of the grand partition function was performed for 
various values of F and M. The lattice of Fig. 2 with ~bo = 0.5 was chosen, 
but the two species were restricted to the distinct sublattices. 

Insight into the possible functional form can be obtained by using 
(3.23) to derive the exact expansion at F =  1. (Although the allowed con- 
figurations of the exact solution differ from those of the numerical calcula- 
tion, we do not expect the functional form to depend on this detail.) For 
example, with ~bo = 1/2, factorizing the k = 0 quadratic in (3.27) gives 

~I(M)~ 8M 1 6 ~ / 2 + ~  ~-5 (4.1) 
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Table IA. The Value of the Zero Closest to the Origin, ~ I ( M ) ,  
in the Symmetr ic  Model  for Values of M and i" As Indicated 

217 

M ~_I(M), F = 0 . 6  ~I(M), F =  1.1 

10 -0.03889993 -0.09387103 
11 -0.03415190 -0.08601634 
12 -0.03031837 -0.07943074 
I3 -0.02716810 -0.07382574 
14 -0.02454035 -0.06899467 

The exact expansion at F =  t suggests the general form 

l(ala2 ) ~I(M)~; a o + ~ r  (4.2) 

where the exponent 7 will depend on the coupling F. By truncating the 
expansion to include only three terms, we can determine the constants ao, 
aj,  and a 2 uniquely from three values of ~.I(M). By selecting different sets 
of data (i.e., different values of M), the accuracy of the choice of ? can be 
estimated from the stability of the coefficients ao, al ,  and a 2. 

In Table IA, the zeros of the grand partition function for M from 10 
to 14 with F =  1.1 and 0.6 are given. In Table IB, the corresponding values 

Table lB. The Values of a0, a l ,  and a z for given y Values 
in the Truncated Expansion (4.2)  ~ 

{I0,11,13} {10,12,14} {12,13,14} 

=0.85 

ao -0.60059 --0.59886 -0.59636 
a 1 --0.83245 -0.87140 -0.93650 
a 2 1.9287 2.1452 2.5659 

=0.9 

a 0 -0.73235 -0.73229 -0.73220 
a 1 -0.13433 --0.13575 -0.13794 
a 2 0.01448 0.02240 0.03654 

= 0.95 

a o --0.89021 --0.89263 --0.89617 
a 1 0.80497 0.85948 0.95137 
a 2 --2.6907 --2.9937 --3.5875 

Various data sets {M> M2, M3) from Table IA have been used with F =  1.1. 
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Tab le l lA .  The Value of the Zero Closest to the Origin, ~ I (M) ,  
in the Asymmetric Model wi th  r  and q~l = 3 / 4  

for Values of M and F As Indicated 

M ~I(M),  F = 0 . 5  ~I(M),  F = 2  

5 -0 .02694465  -0 .34015386  

6 -0 .01916992  -0 .32654753  

7 -0 .01443133  -0 .31724446  

8 -0 .01131261  -0 .31048527  

9 -0 .00914165  -0 .30535346  

of ao, a l ,  and a2 are given at F =  1.1. We see that  the most  stable 7 value 
is 0.9. 

Using Table I A  to perform similar calculations of ao, a~, and a 2 at 
F =  0.6 gives that  in this case 7 = 1.4 is the most  stable value. At F =  1, 
(4.1) gives the exact result y = 1, and since at F =  2 all the zeros are at 

= - 1 ,  (2) we have the further exact result ~ = 0 when F =  2. These results 
provide strong evidence that  for F~< 2 in the symmetric model 

7 = 2 - F  (4.3) 

Next, numerical calculations of the zeros of the grand partition 
function of the asymmetric model for certain values of ~b o and ~bl were 
performed. Here, due to the extra number of configurations contributing 

Table l lB .  As in Table lB, wi th  Data Sets from Tablel lB,  and F=0,5  

{ 5 , 6 , 8 }  { 5 , 7 , 9 }  { 7 , 8 , 9 }  

7 = 1.5 

a 0 - 0 . 1 6 9 5 1  - 0 . 1 6 6 4 2  - 0 . 1 6 2 1 4  

a I - 0 . 7 4 6 6  - 0 . 7 8 5 4  - 0 . 8 5 3 8  

a 2 0.4399 0.5565 0.8259 

= 1.6 

a o - 0 . 2 4 3 8 5  - 0 . 2 4 1 5 9  --0.23850 
a 1 - 0 . 6 0 4 1  - 0 . 6 3 2 4  - 0 . 6 8 1 9  

a 2 0.2708 0.3557 0.5505 

y = 1.4 

ao - 0 . 1 1 5 5 9  - 0 . 1 1 2 4 5  - 0 . 1 0 8 1 2  
a I - 0 , 7 9 5 6  - 0 . 8 3 4 9  - 0 . 9 0 4 1  
a 2 0.4562 0.5744 0.8471 
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to each term, the maximum size polynomial obtained was only of order 
nine. With only small-order polynomials as data, it is more difficult to 
deduce the value of 7 [although from (3.23) we have the exact result that 
at F =  1, 7 = 1]. We find that values of 7 close to the conjectured value 
(4.3) have similar stability properties (see Table II). Nevertheless, none of 
the results obtained were inconsistent with (4.3). In particular, at F =  2, 
with ~bo= 1/4 and ~bl = 3/4 the choice 7 = 0  and the data of Table IIA give 
a o = -0.268, thus indicating a gap between the zeros of the grand partition 
function and the positive 4 axis. The conductor-insulator transition again 
takes place at F =  2. 

The conjecture (4.3) implies that ~I(M) pinches the real 4 axis at 4 = 0 
in the limit M ~ ~ .  Assuming that a finite density of zeros have similar 
behavior [as in the exact factorization (3.23)], the density of zeros function 
g(s) for zeros at s = - 4  thus has the behavior 

g ( S ) ~ C l ( [ , ) S  1 + i / ( 2  / ') a s  s ~ 0  (4.4) 

where Cl(F) is a positive function independent of s. The leading-order 
singular behavior of the dimensionless pressure "cflPsing as  a function of 
is therefore 

 41/ 2 1/(2- r )  r z + 
"cflPsing~C2(I')[41/(2 r~ log ~, 1/(2-- F) e Z + (4.5) 

as ~ ~ 0, where c2(F) is independent of 4. 
For the continuous version of the symmetric model, the expansion 

(4.5) (without the logarithmic correction) appears in ref. 13, p. 3279. 
Note that (4.5) implies that the series expansion of the pressure in 

terms of 4 has the nonsingular term as its leading behavior for F~< 2, while 
for 2 - 1 / ( N +  1 ) > F > 2 - 1 / N  the pressure to leading order behaves as a 
series in the first N powers in 4. This is analogous to the results of ref. 11 
for the continuous two-dimensional symmetric Coulomb gas. 
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